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This paper gives a critical summary of nonempirical , semiempirical and empirical methods 
applicable to studies of weak interactions. The aim is to provide a clear picture of this field in its 
present state of rapid development. The methods described represent a methodical basis for the 
subsequent papers in this series. 

To define weak and strong intermolecular interactions is rather difficult. It is possible to roughly 
characterize the region of strong interactions as that where a covalent bond is formed or broken 
and to attribute weak interactions to that region of complex formation of closed shell molecules. 
There is still a third region which lies between the two extremes and represents a gradual passage 
from one to the other. It is just this region which is extraordinarily interesting and important, 
but unfortunately it is theoretically less accessible than the two extreme cases. In the past strong 
and weak interactions have received differing degrees of attention. While the former have been 
intensively studied for almost half a century, less effort has been devoted to the latter. The methods 
applicable to computations of weak interactions range from simple empirical methods to those of 
rigorous calculations (up to now feas ible only for interactions such as He + He or Hz + Hz). 
That is to say, one can make use of the variatio n or perturbation method at the empirical , semiem­
pirical, or nonempiricallevels. 

The aim of this introductory paper is to survey the significant methods. For most 
of them the description to be given here is rather detailed, since we wish to avoid it 
in the subsequent papers dealing with applications. For the procedures reported in the 
literature we will limit ourselves to reproducing expressions that, in our opinion, are 
necessary for clearness. The range of applicability of the methods just mentioned 
is large and covers several fields of extraordinary importance in chemistry, physics, 
and biology, for example: 

I. Pair interactions: a) association of identical closed-shell molecules, b) charge­
transfer complexes, c) collision complexes. 2. Bulk interactions: a) phase changes 
(melting, evaporization, sublimation), b) Henry and Nernst laws. 3. Conformation 
problems and steric hindrance. 4. Solvation energy. 

Although it was the tremendous importance of solvation in chemistry which prompted 
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our endeavours in this field, we believe it is desirable to begin with more tractable 
problems such as those noted in items 1 and 2; the subsequent papers of this series 
will therefore deal predominantly with these topics. 

Variation Meihods 

Nonempirical method. We define the interaction energy as the difference between 
the total energy of a supersystem and the sum of total energies of isolated systems R 
and T: 

(I) 

By the total energy we imply the sum of the Hartree-Fock energy and the correlation 
energy. A rigorous computation of the interaction energy requires the inclusion of 
inter- as well as intrasystem correlation energy in the total energy of the supersystedi . 
In practice mostly, however, one neglects the intrasystem correlation energy by assum­
ing it to be equal to the correlation energy of the two isolated systems. The correlation 
energy can be determined either by the SCF calculation followed by the complete 
configuration interaction treatment (CCI) or by the multiconfiguration (MCI) 
self-consistent field technique.* Consequently it might appear that the computation 
of interaction energy should be straightforward, aUeast with simple systems. In fact 
satisfactory results were not obtained until the early seventies. The first studies of 
this type dealt with He- He, Li-He, and H-He interactions2

-
4

• The interaction 
energy of two He atoms was determined by both the SCF~CCI (ref. 2) and MCI-SCF 
(ref. 3 ) calculations and the results of the two procedures were in very good agreement. 
McLaughlin and Schaefer5 studied the interaction of two He atoms in more detail 
and demonstrated the effect of individual atomic orbitals on the depth of the energy 
minimum. They arrived at the value of 3·606. 10- 5 a.u. which is in very good agree~ 
ment with the current experimenLal value of 3·15. w-s a.u. (ref. 5 and papers cited 
therein). The interaction of two H 2 molecules was studied by Tapia and Bessis6

• 

They showed a linear approach to be the most likely on energy grounds. The most 
accurate results available for this orientation were reported by Bender and Schaefer 7 ; 

the SCF-CCI calculation in the contracted [2s1p J basis set yielded the energy mini­
mum of 6·6. 10- 5 a.u. which is comparable to the recent value of 10-44. w-s a.u. 
given by molecular beams experiments8

• 

Semiempirical methods. Again, the interaction energy is given by Eq. (J). However 
with semiempirical methods the problem of which geometry to use for isolated systems 
R and T arises. Should one prefer the experimental, optimalized, or some assumed 

We would like to note here the computations of the interaction energy for two hydrogen 
atoms, reported as early as in 1965 by Kolos and Wolniewicz1 who introduced the correlation 
effect by including the interelectronic coordinate. 
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standard geometry?* In our opinion, the only justifiable procedure is that in which the 
interaction energy is treated as a difference between the energy of the optimalized 
supersystem and the sum of energies of optimalized isolated systems. That is to say, 
that not only the intermolecular but also the intramolecular distances should be 
optimalized in the supersystem. The second question which can be asked is whether 
or not the CI should be included. Here the situation is also clear-cut, as there are 
strong arguments9 against the use of CI except for special cases for example the homo­
lytic fission of a covalent bond10

. Applications of semiempirical methods to systems 
with hydrogen bonds have been critically reviewed by Kollman and Allen11 . A more 
general account of these method is however still lacking, in particular the interactions 
of nonpolar systems. 

Perturbation Methods 

By exploiting the first and second order perturbation theories and by making use 
of the experimental quantities such as dipole moment, polarizability, diamagnetic 
susceptibility, or ionization potential, the formulae have been derived for the Cou" 
lomb, induction, and dispersion energies12

• The derivation was based on the assump­
tion of large separation. In such a case the total wave function can be written as 
a simple product of wave functions of the two isolated systems. The problem of the 
exchange energy remained unresolved and one was forced to estimate it in an empirical 
way. The difficulty is that a nonantisymmetrized zero-order wave function does not 
give exchange, while a symmetrized one, is no longer an eigenfunction of the total 
hamiltonian H0 = HR + Hr: therefore, new versions of perturbation theories had 
to be developed. Recently several theories have been suggested13

-
16 whichsolve the 

problem in different ways by considering the total energy as a sum of Coulomb, 
dispersion, induction, exchange-repulsion, and charge-transfer ( delocalization) 
energies. Their application is still limited to interactions of the simplest systems17

. 

In order to make it possible to treat systems of chemical interest, it was necessary 
to simplify the original expressions. A considerable simplification was brought about 
by making use of semiempirical wave functions instead of accurate wave 
functions by adopting approximations which involve semiempirical methods. Fujita 
and Imamura18 used the perturbation theory of Murrell and coworkers13

•
14

. They 
simplified the general expressions by means of the approximations and wave functions 
of the PPP type. Fueno and coworkers19 used the same perturbation theory but based 
it on the CND0/2 wave functions and approximations; the formula for the exchange­
-repulsion energy has already been derived earlier by Cook and Schug20 within the 
framework of the same approach. A common feature in all methods noted is a 

Actually the same problem is met with ab initio calculations. Here, however, the difference 
b~tween the optimalized and experimental geometries is considerably smaller. 
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certain inconsistency in the use of the ZDO approximation. Whereas the intermo­
lecular overlap is considered, the intramolecular overlap is neglected. If one negle­
cted the intermolecular overlap too, the exchange-repulsion energy would not be 
accounted for. In such a case a repulsive nature of the mutual penetration of closed 
shells would be disregarded and the intersystem repulsion would be given merely by 
electron-electron and core-core repulsions. As the latter are significant only at small 
intersystem separations, it is most likely that the overall repulsion would be underesti­
mated in the range of intermediate distances. It is thus desirable to allow for the 
above-mentioned inconsistency: to treat the isolated systems according to the ZDO 
approximation, which is a fundamental feature of semiempirical methods, and to 
maintain the intermolecular overlap, which is inevitable for accounting for the ex­
change repulsion energy (vide infra, however). 

Next we mention other perturbation methods employed currently. In a series of 
papers21

-
24 an SCF perturbation method was developed on the basis of MINDO/l, 

MIND0/2, and CND0/2 formalisms. In contrast to methods noted above it makes 
a consistent use of the ZDO approximation, which leads to the consequence just 
described (we present some numericalresults in Part II of this series). The total energy 
in this perturbation theory is given by the sum of the first and second order energies. 
The first order energy can be identified with the Coulomb energy derived by Fueno 
and coworkers19

, the second order energy comprises the induction energy as defined 
in ref. 19 and the charge-transfer energy. 

Salem25 expanded the interaction energy in the powers of the overlap and in addi­
tion Devaquet26 expanded it in the powers of the total charge. In.the former treatment 
based on the HMO quantities the total energy is given by the sum of the repulsion 
and charge-transfer ( delocalization) energies. The latter makes use of the PPP method 
and the total energy also involves the Coulomb energy. 

In our opinion, the methods noted in the last two paragraphs are not well suited 
for the study of intermolecular forces. Firstly, they neglect some energy terms and, 
secondly, the use of the HMO and PPP models represents a rather serious shortcom­
ing. For the purposes of our study we adopted the expressions derived by Fueno 
and coworkers19 and adopted them to the MIND0/2 approximation. The pertinent 
expressions, at both MIND0/2 and CND0/2 levels, are discussed in Appendix. 

Empirical Methods 

The need to estimate interaction energy in studies of various physical and chemical 
problems stimulated the effort to formulate simple empirical relationships. Mostly 
they were based12 on the combination of the attractive (E ,..., -(r- 6 + r- 8

)) and 
repulsive (E,..., r- 12 or exp ( -r)) terms and on subsequent attempts to determine 
the parameters involved from suitable experiments. For our purposes we have selected 
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a simplified Buckingham potential assuming the overall interaction energy as the sum 
of pair interaction energies over all atoms of the isolated systems Rand T27 •28 

(2) 

Here C1, C2 , and C3 are constants, R; and Ri are experimentally determined van der 
Waals radii, and rii is the interatomic distance for atoms i and j. The parameters 
for H, C, N, F, S, Cl, Br, and I atoms were suggested by Eliel and coworkers28

. 

We would like to emphasize that it is not our aim to find the optimal potential and the 
optimal parameter set but rather to show a large range of applicability of this simple 
method by making use of the single set of parameters. 

Hybrid Methods 

These methods involve some inconsistency viz. that the individual energy terms which 
appear in the summation are evaluated by different methods at different theoretical 
levels. We note only the most important procedures, in particular those that will be 
used in our calculations. The interaction energy determined by the variation method 
is given by subtracting the sum of energies of two isolated systems from the total 
energy of a supersystem. If one makes use of the nonempirical SCF method, the total 
energy is equal to the sum of the Hartree-Fock energy and correlation energy. It has 
been shown29-- 31 that the Hartree-Fock energy comprises Coulomb, exchange­
repulsion, induction, and charge-transfer energy. The only component lacking here 
is the dispersion energy which constitutes the main part of the correlation energy. 
Hence, if one adds the dispersion energy computed by the perturbation theory to the 
Hartree-Fock energy, one should arrive at reasonable estimates of the total energy. 
The dispersion energy can be evaluated by means of the second-order perturbation 
theory 32 through the following equation. 

R T ,_...,.__._ ,_...,.__._ 

ED= -4 I "Ic I "Ic<rs!tu) 2/(.1E~ .... + .1E{_.u), (3) 
, 3 t u 

where the first and second (the third and forth) summations extend over all occupied 
and virtual orbitals of the system R (of the system T). The term in the denominator 
expresses the energy difference between excited and ground states in systems R and T. 
The computation of the dispersion energy is carried out with the wave function given 
by the SCF calculation. The effect of the size of the basis set used and the effect of the 
values of exponents in AOs on the computed interaction energy were investigated 
by Kochanski33 - 35 for the case of two H 2 molecules. The total energy was treated 
as a sum of the dispersion energy (given by the perturbation calculation) and the 
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Coulomb and exchange-repulsion energy (given by the variation calculation). The 
last two terms were equated to the difference between the energy of the supersystem 
in the first iteration and the sum of energies of isolated systems32 ; this is done compu­
tationally by starting the SCF procedure for the supersystem with the eigenvectors 
of the two isolated systems. The total energy computed in this way is thus lacking the 
induction and charge-transfer energies. The author considered them insignificant for 
all orientations of isolated systems. 

As .stated in the section about the perturbation method, the perturbational ex­
pression for Coulomb, induction, and dispersion energies is straightforward. On 
equating some terms in these expressions to experimental quantities, one arrives 
at considerably simpler formulas without loss in accuracy. An analogous treatment 
for the repulsion energy has not yet been formulated. Here it is necessary to evaluate 
the expression obtained perturbationaly by means of wave functions given by MQ 
methods. The use of such a procedure was reported by Cook and Schug20 in a study 
of charge-transfer complexes. The total energy was treated as a sum of Coulomb, 
induction, dispersion, repulsion, and charge-transfer energies; the repulsion energy 
was computed perturbationaly by making use of CND0/2 approximations and wave 
functions and the charge-transfer energy was estimated empirically following Mulli­
ken36. Mostly37 ·38

, however, the repulsion energy is estimated empirically either 
by exploiting the repulsion term of some empirical potential or by making it propor­
tional to different powers of the overlap. It is just this circumstance which causes 
difficulty because it leads to correct estimates of attraction on the one hand but to 
rather rough estimates of repulsion on the other hand. Hanna and Williams3 7 made 
use of this type of procedure in the study of charge-transfer complexes; the repulsion 
energy was approximated by the powers of the overlap and the charge-transfer energy 
was determined, once again, according to Mulliken36. With larger systems the use 
of empirical potentials represents mostly the only feasible treatment. The difficulty 
encountered here is that the potentials currently used were adjusted to interaction 
energies between uncharged nonpolar systems. In the case of charged or polar systems 
the lacking terms for the Coulomb and induction energies may be of crucial signi­
ficance. Ordinarily, one adds them simply a posteriori by use of the expressions39

•
40 

(4), (5) following from the perturbation theory 

R T 

Er = --Hl: [cx:(~P~P) + c5P(~Pot~)2] + L [cxJ(~q~q) + c5q(~qot;)2]}, (5) 

T 

where_ ~P = L qifrJP RiP' c5P = (ex~ - ix~), q denotes the net charges, ~P' IX~, !tiP unit 
i 
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vectors, rx~,L transversal and longitudinal polarizability of the bond p, and r distance. 
It is evident that the subsequent adding of these terms destroys the balance between 
attraction and repulsion terms of an empirical potential because of the simultaneous 
adjusting of parameters in the latter. 

APPENDIX 

Details on actual calculations. In this series of papers the interaction energy is determined as 
a sum of Coulomb (EQ), exchange-repulsion (Ex), induction (£1), dispersion (ED), and charge­
transfer (ECT) energies. 

Within the CND0/2 approach we make use of the expressions derived by Fueno and cowor­
kers19. We note in detail only two terms: the excitation energy, 11Ej-+l• and the electron-core 
attraction integrals,* Va,rs· The denominators in the terms for the induction and dispersion energies 
express the intramolecular excitation energy, 11Ej-+ 1, which we evaluate by means of the single 
determinant transition energy 

(6) 

where all symbols have their usual meaning. The deP.ominator in the term for the charge-transfer 
energy expresses the intermolecular excitation energy, 11Ei-+l· We proceeded here analogously as 
in the preceeding case; the intermolecular (ii Ill) and (ill i/) integrals were evaluated by means 
of the Mulliken's formula41 . We think that this approximation is better substantiated than that 
used by Fujita and Imamura 18, who set the intermolecular excitation energy equal to the energy 
difference between the pertinent molecular orbitals. To illustrate the importance of the inter­
molecular excitation, we calculated it within the CND0/2 approach for several distances between 
two approaching N2 molecules in an rectangular configuration. For the excitation energy from 
the lowest-energy occupied orbital of one molecule to the lowest-energy virtual orbital of the 
other molecule we obtained the following results (in eV, intersystem separations in A are given in 
parentheses): 30·969 (3·1); 31·187 (3-3); 31-386 (3·5); 31·652 (3-8); 31-885 (4·1). This implies that 
the change in excitation energy which is due to a change in the intersystem separation is by no 
means to be neglected. 

The terms for the exchange-repulsion and charge-transfer energies contain intermolecular 
electron-core attraction integrals that, once again, are evaluated by the Mulliken's approximation41 

(7) 

where S,1 denotes the intermolecular overlap integral, atomic orbitals r and t refer to isolated 
systems R and T respectively, and a is an atom of the system R. It has not yet been established 
how to evaluate the intramolecular integral Va,rr if the orbital r is located on the atom a. Should 
this integral have differing values according to the types of AOs or should it have a single value 
(appropriate to the s orbital) regardless of the nature of the AO? We favour the former view and 
assume different values of integrals for sand p-type orbitals, in accordance with the approximation 
involved in the CND0/2 method. 

The application of the MIND0/2 method is straightforward. In terms for the Coulomb, 
induction, and dispersion energies, it is only necessary to substitute wave functions, energies, 
)' integrals, and core-core repulsions by characteristics appropriate for the MIND0/2 method. 

We foil ow the notation of ref. 19. 
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The situation with the exchange-repulsion and charge-transfer terms is slightly more complicated 
because MIND0/2 retains different types of one-centre repulsion integrals. The general express­
sions, containing two, three and four-centre integrals, are simplified by the Mulliken41 formula 

(rt I uv) = { (rr luu) + (rr I vv) + (tt luu) + (tt I vv)} Sr 1Suvf4 (8) 

where atomic orbitals r and u refer to the system R, and t and v to T. Note that Eq. (8) alone 
implies the assumption of vanishing one-centre integrals unless they are of the (ss I ss), (ss I pp) , 
(pp I pp), or (pp I p'p') type. Intra- . and intermolecular excitation energies and electron-core 
attraction integrals are computed analogously as in CND0/2, by making use of the appropriate 
.MIND0/2 characteristics. 
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system interactions: He-H2 (a); Li+ -H2(b); He-HF, He-H2 0 , H 2-HF, H 2- H 2 0(c); 
H 2-H2 (d) and LiH- LiH(e). 
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